508 research outputs found

    Making, probing and understanding Bose-Einstein condensates

    Full text link
    Contribution to the proceedings of the 1998 Enrico Fermi summer school on Bose-Einstein condensation in Varenna, Italy.Comment: Long review paper with ~90 pages, ~20 figures. 2 GIF figures in separate files (4/5/99 fixed figure

    Ultracold neutral plasma expansion in two dimensions

    Full text link
    We extend an isothermal thermal model of ultracold neutral plasma expansion to systems without spherical symmetry, and use this model to interpret new fluorescence measurements on these plasmas. By assuming a self-similar expansion, it is possible to solve the fluid equations analytically and to include velocity effects to predict the fluorescence signals. In spite of the simplicity of this approach, the model reproduces the major features of the experimental data

    Fluorescence measurements of expanding strongly-coupled neutral plasmas

    Full text link
    We report new detailed density profile measurements in expanding strongly-coupled neutral plasmas. Using laser-induced fluorescence techniques, we determine plasma densities in the range of 10^5 to 10^9/cm^3 with a time resolution limit as small as 7 ns. Strong-coupling in the plasma ions is inferred directly from the fluorescence signals. Evidence for strong-coupling at late times is presented, confirming a recent theoretical result.Comment: submitted to PR

    On Fully Dynamic Graph Sparsifiers

    No full text
    We initiate the study of dynamic algorithms for graph sparsification problems and obtain fully dynamic algorithms, allowing both edge insertions and edge deletions, that take polylogarithmic time after each update in the graph. Our three main results are as follows. First, we give a fully dynamic algorithm for maintaining a (1±ϵ) (1 \pm \epsilon) -spectral sparsifier with amortized update time poly(logn,ϵ1)poly(\log{n}, \epsilon^{-1}). Second, we give a fully dynamic algorithm for maintaining a (1±ϵ) (1 \pm \epsilon) -cut sparsifier with \emph{worst-case} update time poly(logn,ϵ1)poly(\log{n}, \epsilon^{-1}). Both sparsifiers have size npoly(logn,ϵ1) n \cdot poly(\log{n}, \epsilon^{-1}). Third, we apply our dynamic sparsifier algorithm to obtain a fully dynamic algorithm for maintaining a (1+ϵ)(1 + \epsilon)-approximation to the value of the maximum flow in an unweighted, undirected, bipartite graph with amortized update time poly(logn,ϵ1)poly(\log{n}, \epsilon^{-1})

    Atomic wave packet dynamics in finite time-dependent optical lattices

    Full text link
    Atomic wave packets in optical lattices which are both spatially finite and time-dependent exhibit many striking similarities with light pulses in photonic crystals. We analytically characterize the transmission properties of such a potential geometry for an ideal gas in terms of a position-dependent band structure. In particular, we find that at specific energies, wave packets at the center of the finite lattice may be enclosed by pairs of band gaps. These act as mirrors between which the atomic wave packet is reflected, thereby effectively yielding a matter wave cavity. We show that long trapping times may be obtained in such a resonator and investigate the collapse and revival dynamics of the atomic wave packet by numerical evaluation of the Schr\"odinger equation

    FLIGHT INFORMATION PRIORITY BY PHASE

    Get PDF
    Includes Supplementary MaterialMilitary helicopter pilots must receive, analyze, communicate, and react to large amounts of information during a flight. Pilots continuously filter through information to identify what is relevant at the current point in their mission based on the operational and flight-specific situation. While fusing information, pilots may experience cognitive overload that results in degraded performance and contributes to catastrophic events. This report investigates whether pilots require different information during different phases of flight, what specific information pilots need during these phases, and how pilots want to receive different types of information. A survey was sent to 3600 US Army UH-60 pilots (362 completed at least one portion of the survey; response rate of ~10%) asking them to prioritize 31 information items (very important, important, somewhat important) by phase of flight. The survey was followed by UH-60 pilot focus groups conducted at Fort Drum, NY. The research team found that desired information varies by phase, identified the specific information needed in each phase, and determined that pilots prefer most information to be presented visually. The conclusions of this study can inform future cockpit designs that integrate emerging technologies while reducing pilot cognitive load and increasing operational efficiency and safety.Captain, United States ArmyCaptain, United States ArmyCaptain, United States ArmyCaptain, United States ArmyCaptain, United States ArmyCaptain, United States ArmyApproved for public release. Distribution is unlimited

    Extracting density-density correlations from in situ images of atomic quantum gases

    Full text link
    We present a complete recipe to extract the density-density correlations and the static structure factor of a two-dimensional (2D) atomic quantum gas from in situ imaging. Using images of non-interacting thermal gases, we characterize and remove the systematic contributions of imaging aberrations to the measured density-density correlations of atomic samples. We determine the static structure factor and report results on weakly interacting 2D Bose gases, as well as strongly interacting gases in a 2D optical lattice. In the strongly interacting regime, we observe a strong suppression of the static structure factor at long wavelengths.Comment: 15 pages, 5 figure

    Long-Term Stability of an Area-Reversible Atom-Interferometer Sagnac Gyroscope

    Full text link
    We report on a study of the long-term stability and absolute accuracy of an atom interferometer gyroscope. This study included the implementation of an electro-optical technique to reverse the vector area of the interferometer for reduced systematics and a careful study of systematic phase shifts. Our data strongly suggests that drifts less than 96 μ\mudeg/hr are possible after empirically removing shifts due to measured changes in temperature, laser intensity, and several other experimental parameters.Comment: 4 pages, 4 figures, submitted to PR
    corecore